Carbon Allocation into Different Fine-Root Classes of Young Abies alba Trees Is Affected More by Phenology than by Simulated Browsing.
نویسندگان
چکیده
Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3-5% of the applied 13C was incorporated, whereas 1-3% in the ≤0.5 mm root class and 1-1.5% in the >0.5-1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5-1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing.
منابع مشابه
Manganese deficiency of silver fir trees (Abies alba) at a reforested site in the Jura mountains, Switzerland: aspects of cause and effect.
We examined manganese uptake and translocation in 30-year-old silver fir trees (Abies alba Mill.) showing severe symptoms of needle chlorosis by analyzing both xylem and phloem sap of shoots and an extract of root sap originating from both xylem and phloem elements. Manganese concentrations in shoot xylem and phloem sap were significantly lower in chlorotic trees than in neighboring healthy tre...
متن کاملPhloem Girdling of Norway Spruce Alters Quantity and Quality of Wood Formation in Roots Particularly Under Drought
Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus dr...
متن کاملHow fast do European conifers overgrow wounds inflicted by rockfall?
The capacity of trees to recover from mechanical disturbance is of crucial importance for tree survival but has been primarily investigated in saplings using artificially induced wounds. In this study, mature Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees growing on alpine slopes that were wounded by naturally occurring rockfall were analyzed to determine their efficien...
متن کاملFine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE)
1. Elevated atmospheric carbon dioxide (CO 2 ) concentrations have often been reported to increase carbon allocation below-ground, particularly to fine root production. However, for trees these responses have primarily been studied in young expanding systems while the evidence for late successional systems that have reached steady state aboveand below-ground is very limited. 2. At the Swiss Can...
متن کاملCellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula×alba)
Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula × alba) we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PloS one
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2016